Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35064079

RESUMO

We present a surface-engineering approach that turns all liquids highly wetting, including ultra-high surface tension fluids such as mercury. Previously, highly wetting behavior was only possible for intrinsically wetting liquid/material combinations through surface roughening to enable the so-called Wenzel and hemiwicking states, in which liquid fills the surface structures and causes a droplet to exhibit a low contact angle when contacting the surface. Here, we show that roughness made of reentrant structures allows for a metastable hemiwicking state even for nonwetting liquids. Our surface energy model reveals that with liquid filled in the structure, the reentrant feature creates a local energy barrier, which prevents liquid depletion from surface structures regardless of the intrinsic wettability. We experimentally demonstrated this concept with microfabricated reentrant channels. Notably, we show an apparent contact angle as low as 35° for mercury on structured silicon surfaces with fluorinated coatings, on which the intrinsic contact angle of mercury is 143°, turning a highly nonwetting liquid/material combination highly wetting through surface engineering. Our work enables highly wetting behavior for previously inaccessible material/liquid combinations and thus expands the design space for various thermofluidic applications.

2.
ACS Nano ; 14(11): 14878-14886, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33185426

RESUMO

Hydrophobic coatings with low thermal resistance promise a significant enhancement in condensation heat transfer performance by promoting dropwise condensation in applications including power generation, water treatment, and thermal management of high-performance electronics. However, after nearly a century of research, coatings with adequate robustness remain elusive due to the extreme environments within many condensers and strict design requirements needed to achieve enhancement. In this work, we enable long-lasting condensation heat transfer enhancement via dropwise condensation by infusing a hydrophobic polymer, Teflon AF, into a porous nanostructured surface. This polymer infused porous surface (PIPS) uses the large surface area of the nanostructures to enhance polymer adhesion, while the nanostructures form a percolated network of high thermal conductivity material throughout the polymer and drastically reduce the thermal resistance of the composite. We demonstrate over 700% enhancement in the condensation of steam compared to an uncoated surface. This performance enhancement was sustained for more than 200 days without significant degradation. Furthermore, we show that the surfaces are self-repairing upon raising the temperature past the melting point of the polymer, allowing recovery of hydrophobicity and offering a level of durability more appropriate for industrial applications.

3.
Adv Sci (Weinh) ; 7(19): 2001268, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33042747

RESUMO

Environmental scanning electron microscopy (ESEM) is a powerful technique that enables imaging of diverse specimens (e.g., biomaterials, chemical materials, nanomaterials) in a hydrated or native state while simultaneously maintaining micro-to-nanoscale resolution. However, it is difficult to achieve high signal-to-noise and artifact-free secondary electron images in a high-pressure gaseous environment due to the intensive electron-gas collisions. In addition, nanotextured substrates can mask the signal from a weakly scattering sample. These drawbacks limit the study of material dynamics under extreme conditions and correspondingly our understanding in many fields. In this work, an imaging framework called Quasi-Newtonian ESEM is proposed, which introduces the concepts of quasi-force and quasi-work by referencing the scattering force in light-matter interactions, to break these barriers without any hardware changes. It is shown that quasi-force is a more fundamental quantity that has a more significant connection with the sample morphology than intensity in the strongly scattering regime. Experimental and theoretical studies on the dynamics of droplet condensation in a high-pressure environment (up to 2500 Pa) successfully demonstrate the effectiveness and robustness of the framework and that the overwhelmed signal of interest in ESEM images can be reconstructed through information stored in the time domain, i.e., frames captured at different moments.

4.
Nat Commun ; 10(1): 2368, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147534

RESUMO

We experimentally realized and elucidated kinetically limited evaporation where the molecular gas dynamics close to the liquid-vapour interface dominates the overall transport. This process fundamentally dictates the performance of various evaporative systems and has received significant theoretical interest. However, experimental studies have been limited due to the difficulty of isolating the interfacial thermal resistance. Here, we overcome this challenge using an ultrathin nanoporous membrane in a pure vapour ambient. We demonstrate a fundamental relationship between the evaporation flux and driving potential in a dimensionless form, which unifies kinetically limited evaporation under different working conditions. We model the nonequilibrium gas kinetics and show good agreement between experiments and theory. Our work provides a general figure of merit for evaporative heat transfer as well as design guidelines for achieving efficient evaporation in applications such as water purification, steam generation, and thermal management.

5.
ACS Nano ; 13(2): 1953-1960, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30653292

RESUMO

Environmental scanning electron microscopy (ESEM) is a broadly utilized nanoscale inspection technique capable of imaging wet or insulating samples. It extends the application of conventional scanning electron microscopy (SEM) and has been extensively used to study the behavior of liquid, polymer, and biomaterials by allowing for a gaseous environment. However, the presence of gas in the chamber can severely degrade the image resolution and contrast. This typically limits the ESEM operating pressure below 1000 Pa. The dynamic interactions, which require even-higher sensitivity and resolution, are particularly challenging to resolve at high-pressure conditions. Here, we present an enhanced ESEM technique using phase reconstruction to extend the limits of the ESEM operating pressure while improving the image quality, which is useful for sensing weak scattering from transparent or nanoscale samples. We applied this method to investigate the dynamics of condensing droplets, as an example case, which is of fundamental importance and has many industrial applications. We visualized dynamic processes such as single-droplet growth and droplet coalescence where the operating pressure range was extended from 1000 to 2500 Pa. Moreover, we detected the distribution of nucleation sites on the nanostructured surfaces. Such nanoscale sensing has been challenging previously due to the limitation of resolution and sensitivity. Our work provides a simple approach for high-performance ESEM imaging at high-pressure conditions without changes to the hardware and can be widely applied to investigate a broad range of static and dynamic processes.

6.
ACS Nano ; 12(11): 11013-11021, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30299928

RESUMO

Omniphobic surfaces based on reentrant surface structures repel all liquids, regardless of the surface material, without requiring low-surface-energy coatings. Although omniphobic surfaces have been designed and demonstrated, they can fail during condensation, a phenomenon ubiquitous in both nature and industrial applications. Specifically, as condensate nucleates within the reentrant geometry, omniphobicity is destroyed. Here, we show a nanostructured surface that can repel liquids even during condensation. This surface consists of isolated reentrant cavities with a pitch on the order of 100 nm to prevent droplets from nucleating and spreading within all structures. We developed a model to guide surface design and subsequently fabricated and tested these surfaces with various liquids. We demonstrated repellency to 10 °C below the dew point and showed durability over 3 weeks. This work provides important insights for achieving robust, omniphobic surfaces.

7.
Langmuir ; 34(15): 4658-4664, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29578348

RESUMO

Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Filmwise condensation is prevalent in typical industrial-scale systems, where the condensed fluid forms a thin liquid film due to the high surface energy associated with many industrial materials. Conversely, dropwise condensation, where the condensate forms discrete liquid droplets which grow, coalesce, and shed, results in an improvement in heat transfer performance of an order of magnitude compared to filmwise condensation. However, current state-of-the-art dropwise technology relies on functional hydrophobic coatings, for example, long chain fatty acids or polymers, which are often not robust and therefore undesirable in industrial conditions. In addition, low surface tension fluid condensates, such as hydrocarbons, pose a unique challenge because common hydrophobic condenser coatings used to shed water (with a surface tension of 73 mN/m) often do not repel fluids with lower surface tensions (<25 mN/m). We demonstrate a method to enhance condensation heat transfer using gravitationally driven flow through a porous metal wick, which takes advantage of the condensate's affinity to wet the surface and also eliminates the need for condensate-phobic coatings. The condensate-filled wick has a lower thermal resistance than the fluid film observed during filmwise condensation, resulting in an improved heat transfer coefficient of up to an order of magnitude and comparable to that observed during dropwise condensation. The improved heat transfer realized by this design presents the opportunity for significant energy savings in natural gas processing, thermal management, heating and cooling, and power generation.

8.
Sci Rep ; 8(1): 540, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323200

RESUMO

Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Dropwise condensation, where discrete droplets form on the condenser surface, offers a potential improvement in heat transfer of up to an order of magnitude compared to filmwise condensation, where a liquid film covers the surface. Low surface tension fluid condensates such as hydrocarbons pose a unique challenge since typical hydrophobic condenser coatings used to promote dropwise condensation of water often do not repel fluids with lower surface tensions. Recent work has shown that lubricant infused surfaces (LIS) can promote droplet formation of hydrocarbons. In this work, we confirm the effectiveness of LIS in promoting dropwise condensation by providing experimental measurements of heat transfer performance during hydrocarbon condensation on a LIS, which enhances heat transfer by ≈450% compared to an uncoated surface. We also explored improvement through removal of noncondensable gases and highlighted a failure mechanism whereby shedding droplets depleted the lubricant over time. Enhanced condensation heat transfer for low surface tension fluids on LIS presents the opportunity for significant energy savings in natural gas processing as well as improvements in thermal management, heating and cooling, and power generation.

9.
Nano Lett ; 17(10): 6217-6220, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28926270

RESUMO

Evaporation is a ubiquitous phenomenon found in nature and widely used in industry. Yet a fundamental understanding of interfacial transport during evaporation remains limited to date owing to the difficulty of characterizing the heat and mass transfer at the interface, especially at high heat fluxes (>100 W/cm2). In this work, we elucidated evaporation into an air ambient with an ultrathin (≈200 nm thick) nanoporous (≈130 nm pore diameter) membrane. With our evaporator design, we accurately monitored the temperature of the liquid-vapor interface, reduced the thermal-fluidic transport resistance, and mitigated the clogging risk associated with contamination. At a steady state, we demonstrated heat fluxes of ≈500 W/cm2 across the interface over a total evaporation area of 0.20 mm2. In the high flux regime, we showed the importance of convective transport caused by evaporation itself and that Fick's first law of diffusion no longer applies. This work improves our fundamental understanding of evaporation and paves the way for high flux phase-change devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...